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Abstract—We analyzed the effect of multiplicative noise on 
signal resolution characteristics when a statistical criterion for 
processing is used in the receiving device. The receiver is 
optimal for resolving two signals in the sense of detecting 
against the background of additive white noise. It is shown that 
the complex envelope of the signal at the output of the analyzed 
receiver can be considered as a flat vector with correlated 
components having different variances. However, with fast 
multiplicative noise, the named components become 
uncorrelated, and their variances become equal. It is shown 
that the delay time resolution intervals and frequency shift 
resolution intervals with known statistical characteristics of 
signals, additive and multiplicative noise are uniquely 
determined by the probabilities of correct and false resolution. 
It is pointed out that the use of a statistical criterion allows us 
to determine quantitative values of resolution intervals in a 
fairly wide range of changes in the parameters of additive and 
multiplicative noise, significantly exceeding the Woodward 
criterion for example. Thus, the use of statistical criteria leads 
to an increase in the efficiency of radio systems. 

Keywords—receiver, fast multiplicative noise, additive white 
noise, statistical criterion, resolution interval, resolution 
probability, Woodward criterion 

I. INTRODUCTION 
We estimate the effect of multiplicative (modulating) 

noise (MN) on the signal resolution characteristics during 
their processing in the receiver, optimal for the resolution of 
two signals in terms of detection, against the background of 
additive noise (AN) in the form of white noise [1, 2, etc.]. 

We assume that the input of the receiver can receive two 
signals with random initial phases and unknown amplitudes, 
which differ in the delay time by  and in the frequency shift 
by . In this case, it is known a priori that one of the signals, 
which will further be called the first one, with a complex 
envelope  1U t  is present, and its parameters  and  are 
equal to 0 and 0, respectively. Without violating 
generality, it is assumed that 0 0,   0 0.   The second 
signal with a complex envelope  2 ,U t    differs from 
the first one in the amplitude, time shift , and frequency 
shift  that are considered to be known. Additive white noise 
with a complex envelope  N t  can be found at the input of 
the receiver simultaneously with the two signals. 

If the probability of detecting signal 2 is almost 
independent of the presence of signal 1, then it is considered 
that it is resolved relative to the first signal in the sense of 

detection [2, 4]. The probability of detecting signal 2 in this 
case can serve as a quantitative measure of the resolution of 
two signals, depending on the parameters  and , the level 
of signals and noise. They will be called the probability of 
resolution Pr. 

The receiving device, which is optimal for the resolution, 
in terms of detection, of signal 2 against the background of 
signal 1 and AN as white noise, forms an output effect in the 
form of [2, 5] 

    *1 ,
2 inZ U t Q t dt




    

where 
       

        
1 2

1 0 2 0

,

exp
inU t U t U t N t

E U t E U t j t N t

      

        

   

    

is a complex envelope of the input mixture of two signals 
and normal white noise  ;N t   Q t

 
is a complex envelope 

of the reference signal of the correlation receiver;  0U t
 
is a 

complex envelope of the signal that differs from the received 
one in that its energy is equal to unity; E is signal energy. 

Note that here and further an asterisk sign will mean a 
complex conjugate. 

As mentioned above, the probability of resolution of 
signal 2 relative to signal 1 in the adopted model is 
determined by the probability of its detection against the 
background of signal 1 and AN. It means that it is 
determined by the probability of the output effect Z 
exceeding a certain threshold level Zth, which is selected 
based on the given probability of false detection of the signal 

2U  in its absence. This probability is formally defined in the 
same way as false alarm probability in the detection theory. 
Let us denote it as Fr. Further, it will be called the false 
alarm probability. 

Multiplicative noise distorts both received signals. In 
general, the noise modulation functions (NMF) of the first 
and second signals may be different. We denote these 
functions  1 ,M t   2M t

 
respectively, and assume them to 

be stationary and stationary connected by random functions. 
Note that       expM t t i t    is the NMF, which 

fully characterizes the parasitic modulation of the signal;
    0 1 0t t         is a dimensionless multiplier, which 

characterizes changes in the signal envelope caused by MN 
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(amplitude distortion); 0 is mathematical expectation  ;t  

 t  is a stationary random process with zero mean 

 1 0;t       t  are changes in the signal phase caused 
by MN (phase distortion). 

With the above in mind, when MN is present, the 
complex envelope of the signal at the input of the receiver in 
question will be written as 


         

    
. 1 1 0 2 2 0

exp .
in mU t M t E U t M t E U t

j t N t

    

     

    


 

Further, we will consider the case when MN has a 
noticeable effect on the probability of resolution, while in the 
absence of MN, signals 1 and 2 are confidently resolved. It is 
obvious that the autocorrelation function of the signal 
 ,    will be much less than unity  , 1.     

II. ESTIMATION OF THE INFLUENCE OF MULTIPLICATIVE NOISE 
ON SIGNAL RESOLUTION CONDITIONS BASED ON A 

STATISTICAL CRITERION 
As it was stated before, it is necessary to introduce a 

Taking into account the defined conditions, the reference 
signal  Q t

 
for estimating the influence of MN can be 

approximately written as 

       0 exp .Q t U t j t        

Substituting (2) in (1) and taking into account (3), we 
obtain an expression for a complex envelope of the output 
effect of the linear part of the receiver in the presence of 
additive and multiplicative noise: 


     
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
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

 





 

In accordance with (1), the output effect of the receiver in 
the presence of MN is determined by the ratio 

    2 2 2 2Re Im .m m m mZ Z Z Z x y          
    

In order to find the resolution probability Fr, first of all, it 
is necessary to determine the statistical characteristics of the 
quadrature components х and y of the complex envelope of 
the signal at the output of the linear part of the receiver. 

Given that    1 01 01exp ,M jt     

   0 22 2 0exp ,M jt     where, 0, 0 are, respectively, a 
relative level of the undistorted part of the signal and its 
initial phase, and assuming that 01 02 0,     we obtain the 
following expression for the average value :mZ  


   02 2 01 1

Im

ex

R

p , .

em m mZ Z j Z

E E j

  

       

  


 

Note that the variance of the quadrature components and 
their cross-correlation function can be written as 



2 * *
0 0 0 0

2 * *
0 0 0 0

1 1
2 2
1 1
2

Re Re

Re e ,
2

;

R

x

y

Z Z Z Z

Z Z Z Z

   

  

  

 


 

 
 

where 0 ;m mZ Z Z       0 .m mZ Z Z       
Superscripts (character strokes) for mZ  and 0Z  indicate 

the difference in the integration variables in (4). That is, mZ   
is defined by the expression (4) for the integration variable 
t  , while mZ   is defined for the variable .t   

If we express 0 1 2 3 ,Z b b b         where ib  are 
corresponding centered terms of the right-hand side of (4), 
then 
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0
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1 10

;
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 
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After calculating the formula (7), we get 


   
    

* 2 2
0 0 2 12 1 11

1 2 .21 0

2 0,0 2 ,
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
   
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The following notation is introduced here: 


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V
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
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
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
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           
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where  1VG   is the energy spectrum of fluctuations  1 ;M t  

 21VG 
 
is the mutual energy spectrum of differences 

   1 01 01expM t j 
 
and    2 02 02exp ;M t j   21DG  is 

the Fourier transform of the function 


 

       
21 1 2

2 1 02 02 1 2 01 01exp exp .

VG t t

M t j M t j

 

          



 
 

Expressions for  2
12 , ,     2

22 , ,    that characterize 

signal 2 have the form similar to  2
11 , ,     2

21 , .    
Analyzing expressions (6)–(10), we see that the complex 

envelope of the signal at the output of the analyzed receiver 
can be considered as a flat vector with correlated components 
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having different variances. However, in cases where MN 
leads to a significant deterioration of the resolution 
conditions, that is, with relatively fast and strong MN, the 
quadrature components x and y become uncorrelated random 
processes close to normal, with equal variances. 

Similar results are also obtained in cases where the NMF 
 1 ,M t   2M t  are stationary normal random processes. In 

both of these cases, the probability density of the output 
effect of the receiver Zm can be considered as generalized 
Rayleigh probability density: 

  
2 2

02 2 2exp
2

m m m
m

Z Z m mZ
W Z I

           
 

with the parameters:  Re ,mm Z   where mZ  is determined 

from the expression (5), and
 


   

    

2 2 2 2 2
2 12 1 11

1 2 .21 0

0,0 ,

1 Re exp 0, ,0, 2.
2

x y

s

E E

E E j B N

           

    
 

It should be noted, that for relatively fast MN, when the 
quadrature components x and y can be assumed to be normal, 
the coefficient of mutual correlation of signals 

 .21 0, ,0,sB    at such values , , at which the probability 
of resolution in the absence of MN is high enough , is small. 
Thus, the third term in (11) in comparison with the first two 
terms can be neglected. Finally, we get 

    2 2 2
2 12 1 11 00,0 , 2.E E N         

The probability of resolution of the second signal relative 
to the first one in the presence of additive and multiplicative 
noise, taking into account (11), will be 


п

2 2

02 2 2exp
2

, ,

Z
m m m

r m

th

Z Z m mZ
P I dZ

ZmQ

             
     


 

where , thZmQ  
   

 is a Q-function; Zth is a the threshold 

value Z, which is determined based on the specified level Fr
 of probability of false alarm (false detection) of signal 2 

against the background of signal 1 and noise. 
When determining the probability of false alarm, one can 

take the distribution of the output effect Z as simple Rayleigh 
distribution (m = 0), then the threshold is 

 1
1 2ln ,th rZ F    

where  2 2
1 1 11 0, 2.E N       

The relations (13) and (14) can be used to estimate the 
effect of MN on the resolution of two signals. They show 
that the probability of resolution of signal 2 is defined as the 
probability of detecting the sum of undistorted part and the 
noise components of the second signal exposed to AN and 
the noise component of the first signal at the point, where the 
undistorted part of the second signal is situated. 

There are cases where the ratio of the power of the 
undistorted part of the signal at the output of the linear part 

of the receiver m2 to the power of fluctuations caused by AN 
and MN (12), while 2

 at the point where signal 2 is located 
is greater than unity. In these cases, the resolution probability 
can be expressed in terms of the well-known and properly 
tabulated Laplace function (probability integral). 

Taking into account [5] the asymptotic formula, the 
expression (13) is transformed into 

  1 ,rP F    

where 



2

2 3

11

1 0, 5 ;
2

4 6

2 ln ;th
r

u uu
m m m

Z m mu F 


     

            
    
    

 

  
21 exp .

22
xF dx





 
   

  
  

From subsequent expressions, it follows that the 
approximate formula (15), as an asymptotic representation, is 
valid only when 1,m    that is, in cases when the peak 
power of the undistorted part of the signal exceeds the power 
of fluctuations due to MN and AN at the point where the 
signal 2 is located. 

If the probabilities of correct resolution and false alarm 
Pr, Fr 

are given, then based on (15)–(17), the integral of 
delay resolution r or frequency resolution r corresponding 
to the given probabilities Pr, Fr 

 can be determined. 
Apparently, the power of fluctuations 2, 1

2 ((12), (14)) 
depends on the shift between signals in time and frequency, 
moreover 

      2 2 2
1 2 12, , 0,0 .E          

Thus, to find the resolution intervals for the given values 
Pr, Fr 

it is necessary to find the function 
   2 2

1 1 11 0, , 2E N       
 
from (15)–(17) taking into 

account (14), and then, having calculated  2
11 , ,    

determine the resolution intervals. 
Let us denote the argument value  by  0 .rP  It 

satisfies equation (15) for the given value Pr. The equation 
for finding 1

2, which is obtained by substituting  0 rP  
for  in the left part of (16), is very complex and its solution 
can be found only by numerical methods. We will only 
calculate the first approximation for  2

1 , ,    which is 
valid only for large relations .m   Keeping the first two 
terms of the function  u  on the right side of (16), we 
have 

 0 2 2

11 .
2

thZ m
m

 
       

 

If it is assumed 2 22 1m    and the notation 
2 2 2

1 ;a     1thZ b   is introduced, we get the following 
quadratic equation with respect to 1: 
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  2 2 2 2 2 2
1 0 1 02 0,b bm a m          

where  2 2
2 12 0,0 ;a E    2 2ln 1 .rb F  

Note, that the parameters a2 and b are determined by the 
statistical characteristics of the MN, the specified false alarm 
level, and do not depend on the intervals ,  between 
signals. 

The equation (19) is solved as 


  

2
2 2 2 2 2 2 2

0 02
1 2 2

0

.
bm b m a m b

b

           
  

 

By substituting the calculated value 1
2 in (14), the 

resolution intervals r,  r  
can be determined from a known 

function  2
11 , .    In many cases, there are simple functions 

inverse to  2
11 , .    Denoting the function inverse to 

 2
11 ,    as  2

11arc , ,    we get 


2

2 01
11

1 1

, arc .
2r r
N

E E
 
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 

 

For example, if    2 2 2
11 ,0 exp ,      then 

2 2
11 11

1arc ln ,
a

     so the resolution intervals are written as 


2

01

1 1

1, ln .
2r r
N

a E E
 

     
 

 

Let us consider another method for calculating resolution 
intervals based on the simplest linear approximation of the 
relation between the squares of the arguments of an 
incomplete Toronto function [6], with the Q-function being 
its special case 

    2, 2 1 1,0, ,yQ x y T x   

where  1,0,yT x  is the incomplete Toronto function. Note 

that in our problem 2 2 22 ,x m   2 2 2 .2thy Z   
Figure 1 shows the dependencies  2 2y f x  for several 

fixed values Pr (solid line) and linear approximation (dotted 
line) of these dependencies by the functions 

 2 2 .y x    

It is illustrated by figure 1, that the functions of type (22) 
effectively approximate real dependences at significant 
intervals of change in values x2 and y2. 

 
Fig. 1. Dependency  2 2y f x  

Table 1 shows the values of the coefficients  and  for 
several probabilities of correct resolution Pr 

and the 
boundary values x and y for which the introduced 
approximation is valid. 

For each Pr 
value, there are two values of the 

coefficients  and , and, consequently, there are two values 
of the interval bounds for approximation applicability (22). 

The dependencies shown in figure 1 correspond to the 
values  and  specified for each Pr 

in the top row. When 
changing x and y within the intervals specified in table 1, the 
relative errors in fulfilling the conditions constrP   based 

on which the dependencies  2 2y f x  are constructed, are 
several percent. 

Taking into account (22), we can write the following 
relation for finding resolution intervals: 


2 2 2
1

2 2 2 2
1 1

2 ,
b m

a a


   
   

 

from where, using (14), (21), as well as expressions for 
parameters a2 and b from (19), we get 


 

2
22
12

2 1 1
11 2

1

2 0,0
1, arc ,

12 ln 2
r

p

r

Em
E E

q
F

 
    
 

            

  

where 2
1 1 0 .2q E N  

TABLE I.  COEFFICIENT VALUES 

r
P    

min
x  

max
x  

min
y  

max
y  

0,5 1,25 0 1,41 3,74 1,58 3,74 
1 -0,7 0 2,45 0,89 2,55 

0,7 0,925 0,6 1,58 3,6 1,41 3,4 
0,69 -0,2 0,7 2 0,7 1,7 

0,9 0,75 1,5 2 4,5 1,2 3,6 
0,33 0 0,7 1,73 0,39 1,0 

0,99 0,55 5 3,6 5 1,41 3 
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Expression (23) is much simpler than (18), but it can only 
be used with restrictions on the range of parameters x, y 
specified above, as well as in table 1. Since the parameters x 
and y are defined through the characteristics of the AN and 
MN and the characteristics of the signals, the relations below 
set implicit restrictions on the characteristics of signals and 
noise, under which the expression (24) is valid: 


   

22
2 20
min max2 2 2 2 2

2 12 1 112 0,0
,

,r r

m Nmx x
q q

  
     

  

  
   

2
2
min 2

2 2
1 11 2

max2 2 2 2
2 12 1 11

2
, 112ln

0,0 1
,

,

th

r r

r r r

Z
y

q
x

F q q

 


    
         

  

where 2
2 2 02 .q E N  

It follows from (20), (24) that the resolution intervals r, 
r with known statistical characteristics of signals, additive 
noise and modulating noise, are uniquely determined by the 
probabilities of correct and false resolution. These 
probabilities are taken into account in the specified formulas 
by the parameters 0, b in (20) and the parameters  and  in 
(24). 

Approximate relations (20), (24) allow us to determine 
the quantitative values of resolution intervals in a quite wide 
range of changes in the parameters of additive and 
modulating noise. At the same time, the simplest criterion for 
quantifying the resolution intervals of two signals of the 
same intensity in the presence of MN is based on the 
Rayleigh concept of resolution (Woodward's criterion [6]), 
and can be used only under rather strict restrictions imposed 
on noise. In particular, it does not allow us to take into 
account the influence of AN on the resolution conditions, 
whereas with MN it gives correct results only in cases when 
the power of the undistorted part of the signal is small 
compared to the power of its noise component at the output 
of the linear part of the receiver [7]. 

III. QUANTITATIVE RESTRICTIONS ON THE LEVEL OF ADDITIVE 
NOISE AND CHARACTERISTICS OF MULTIPLICATIVE NOISE 
It is of interest to quantify the restrictions on the level of 

AN and the characteristics of MN, in which the resolution 
intervals calculated on the basis of the Woodward criterion 
and on the basis of the simplest statistical criterion discussed 
above are quite close. Since in our analysis we will be 
interested in the case of a small level of the undistorted part 
of the signal, only the ratio (24) can be used in calculations 
to determine the resolution intervals. 

We will determine the effect of the parameters 0, q2 on 
the resolution intervals for fixed values Pr, Fr. It is assumed 
that the resolution intervals determined based on the 
Woodward criterion and the statistical criterion coincide, 
when 2

0 0,   2 ,q    and are equal to r, r. When 
2
0 0,   2 ,q    the probability of resolution by the 

statistical criterion instead of (13) is determined by the ratio 
(26). 

If the method of reference r, r is chosen, based on the 
Woodward criterion, for example, it might be the width of a 
rectangle of the equivalent area, then when comparing the 
results obtained using the above-mentioned criteria, it is 
necessary to take into account that in accordance with (26), 

each probability value Pr, corresponds to a well-defined and 
unique value Fr (27). 
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2 2
1
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1ln
exp exp .

2 0,0
1

,

rth
r

FZ
P

  
           

        

  


 
 

2
1
2
1

0,0 1exp 1 ln .
,r

rP
F

                  
  

If the values Pr, Fr are set, then in order to determine the 
scope of the Woodward criterion in the presence of MN, it is 
necessary to choose a method for determining the values

 
r, 

r. based on this criterion. In other words, we have to 
determine such a reference level for the width of the interval 
occupied by the noise component at the output of the 
receiving device, in which the resolution intervals calculated 
using the Woodward criterion would coincide with the 
resolution intervals determined by the following formula, 
resulting from (26): 

  2 2
1 1

ln
, arc 0,0 .

ln

r
r r

r

r

P
F
P

 
 
       
  
   

 

В дальнейшем будем считать, что заданы 
вероятности правильного разрешения Pr и уровень 
отсчета, определяющий вудвордовские интервалы 
разрешения .r W , .r W . 

We will estimate the effect of the level of the undistorted 
part of the signal 0

2 on the resolution intervals when the AN 
level is low and  2 2

01 02 .q    For small values of  


 

2
0

22
0

2 2
.

1
ln .

l 1n2 rr W Pl

  
     

 
 
 

   

Expression (28) is not directly included in the reference 
level at which the resolution interval must be measured when 
using the Woodward criterion. For the example under 
consideration, which relates the resolution interval lr.W to the 
reference level    2 2

1 .в 1 0pl    : 


 
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22 2
1.

2 2
1 .

02 1ln ln .r W

r W

l
l


 

 
  

Taking into account (29) instead of (28), we have 


   

2
0

2
0

2

11 ln .
lnln 1 1 rP

  
    

 
 
 

  

When the resolution interval is defined as the width of a 
rectangle equal to the area of the function  2

1 ,l for the 
example under consideration, we have 
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
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2
1 .

0 1ln ln .
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
  


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Inequality (28) shows that the relative error  in 
determining the resolution interval according to the 
Woodward criterion, which occurs due to the presence of the 
undistorted part of the signal, depends on the parameter 

 2 2
0 01   . This parameter determines the ratio of the 

power of the undistorted part of the signal to the power of 
fluctuations caused by the presence of MN at the point where 
the undistorted part of the signal reaches its maximum. 

Expression (28) also shows that the specified ratio, all 
other things being equal, can be the greater, the lower the 
reference level  determining the resolution interval lr.W. 

Now we will estimate the effect of AN on the resolution 
intervals, assuming 2

0 0  . In order to do this, you must use 
a relation of (26) type as the original expression, since the 
expression (35) is not applicable if 2

0 0,   since the 
condition (25) is not met. 

From (26) taking into account (11), (14) we will get 
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.
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2ln exp .r
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q
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Expressing the value lr.W in terms of the reference level 
, we finally get 

 2

2ln exp .rl q
   

     
    

  

In (30), there is no explicit dependence of the resolution 
interval on the probability of correct resolution and the 
probability of false alarm. Obviously, this is due to the fact 
that for a given resolution interval lr.W based on the 
Woodward criterion, AN equally affects the resolution 
interval lr. for any values Pp, Fp that satisfy the relation (26). 

The relative difference between the resolution intervals 
determined on the basis of the Woodward criterion and the 
statistical criterion (34), taking into account (30), will be 

 2

1 21 1 ln 1 .
ln q

 
       

  

For small relative errors , which we are interested in, we 
can expand the second term in (31) into a power series and 
restrict ourselves to two terms of the expansion. Then, 
representing the natural logarithm by two terms of its Taylor 
series expansion in the vicinity of the point 22 1,q    we 
will finally get 

 2 .
lnq



 

   

The formula (32) allows us to determine the acceptable 
level of AN at which it is still possible to use the Woodward 
criterion based on a given error value . 

It follows from the obtained formula, that the permissible 
ratio of the signal energy to the spectral density of power of 
additive noise q2 is smaller, the narrower the spectrum of the 
noise modulation function and the smaller the parameter . 

If the resolution interval lr.W is defined as the equivalent 
width of the function describing the power distribution of 

signal fluctuations at the output of the linear part of the 
receiver, then  exp ,    while the value 2q    must be 

at least not smaller than   1
.


   

Since the parameter q2 equal to the ratio of the peak 
power of the undistorted signal to the power of AN at the 
output of a coherent receiver, the value 2q    can be 
interpreted as the ratio of power of fluctuations of the signal 
distorted by MN at the point .r Wl l  to the power of AN at 
the output of the same receiver. With this in mind, the use of 
the Woodward criterion for determining the difference 
intervals in the presence of AN does not lead to gross errors 
only in cases where the power of the noise component of the 
signal at the point .r Wl l  exceeds the power of the AN. 

IV. CONCLUSIONS 
Relations are obtained that allow us to determine the 

quantitative values of the resolution intervals in a fairly wide 
range of changes in the parameters of additive and 
multiplicative noise. At the same time, the simplest criterion 
for quantifying the resolution intervals of two signals of the 
same intensity in the presence of multiplicative noise, based on 
the Rayleigh concept of resolution (Woodward's criterion), can 
be used only under sufficiently strict restrictions imposed on 
noise. Moreover, it does not allow us to take into account the 
influence of additive noise on the resolution conditions, 
whereas for multiplicative noise it gives correct results only in 
cases when the power of the undistorted part of the signal is 
small compared to the power of its noise component at the 
output of the linear part of the receiver. It is shown that the 
relative error in determining the resolution interval by the 
Woodward criterion, which occurs due to the presence of an 
undistorted part of the signal, depends on one particular 
parameter. This parameter determines the ratio of the power of 
the undistorted part of the signal to the power of fluctuations 
caused by the presence of multiplicative noise at the point 
where the undistorted part of the signal reaches its maximum. 
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